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Anisotropic critical properties of the hexatic N + 6 phase near the transition
to the hexagonal discotic phase
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We treat the theoretically predicted hexatic N +6 phase near the transition to the hexagonal discotic
phase by means of a renormalization technique. In particular, we investigate one-loop corrections to the
order-parameter correlation function. The condensation of the hexagonal two-dimensional lattice of the
ordered phase from the bond-orientationally-ordered N + 6 phase was described in a previous work [C.
Giannessi, Phys. Rev. A 28, 350 (1983)] using a triple mass-density wave as an order parameter. The re-
quirement of local invariance under rotations gives rise to gauge coupling between the order parameter
and the bond-angle field Q, introduced to fix the full orientational order of the hexatic phase. The pecu-
liar tensorial structure of such a gauge coupling yields anisotropic corrections to the order-parameter
correlation function, even in the plane orthogonal to the nematic director with respect to the directions
of the sixfold crystallographic axes. As a consequence, the structure factor for x-ray diffraction should
acquire sixfold anisotropy, revealing anisotropic scaling of correlation lengths. Actually, the occurrence
of anisotropic scaling depends on the existence of a stable anisotropic fixed point of renormalization
flow. For technical reasons it has not been possible to determine and analyze the fixed point controlling
the phase transition, so that we can only state the possibility of anisotropic critical behavior character-
ized by correlation lengths in directions parallel and orthogonal both to the director and to the sixfold
crystallographic axes diverging with different critical exponents.
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I. INTRODUCTION

Bond-orientationally-ordered phases [1-3], as inter-
mediates between a fully disordered phase and a phase
that is both orientationally and translationally ordered,
should be a universal feature of ordered media. Such new
phases have been theoretically predicted, on symmetry
grounds, in a wide class of systems, such as Lifshitz point
systems and various kinds of liquid crystals, which share
some symmetry features despite different physical struc-
tures [3]. On the other hand, for most of these phases
there is not yet experimental evidence. In fact, the actual
range of stability of a particular intermediate phase could
depend on fluctuation-induced breaking of long-range
orientational order, which might make experimental ob-
servation of these phases very hard.

In discotic liquid crystals, according to our model for
the melting of the hexagonal discotic phase into the
nematic phase [4,5], we predicted the existence of an in-
termediate hexatic N + 6 phase [2,4], which is still experi-
mentally undiscovered. As regards symmetry, the hexat-
ic phase is intermediate between the disordered phase and
the ordered one: it is translationally invariant and there-
fore has homogeneous density like the nematic phase,
while exhibiting long-range sixfold orientational order
around the director like the hexagonal discotic phase.

In fact, the hexagonal discotic phase can be viewed as a
quasi-two-dimensional system [4], consisting of an array
of liquid columns parallel to each other, the axes of
which are regularly positioned on a two-dimensional hex-
agonal lattice. The liquidlike behavior along the columns
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should stabilize the two-dimensional lattice against
thermal fluctuations [4], so making the system stable in
the thermodynamic limit, while the strictly two-
dimensional lattice is weakly unstable when the size of
the system goes to infinity [6]. In any other regard, the
system is analogous with a two-dimensional lattice and
therefore the phase diagram should present an intermedi-
ate phase, in agreement with the Nelson-Halperin theory
of two-dimensional melting [7]. In this connection, the
stability of the N +6 phase against fluctuation-induced
breaking of long-range orientational order has just been
tested [8].

As an order parameter for the condensation of the hex-
agonal phase from the intermediate N + 6 phase, we used
a set of complex parameters describing the onset of a tri-
ple mass-density wave in the plane orthogonal to the
nematic director (conventionally taken along the Z axis)
[4]. The hexatic phase, on the contrary, is melted as re-
gards the two-dimensional lattice, but it maintains a ves-
tige of the singled-out crystallographic axes in the hexag-
onal anisotropy. Therefore, the nematic director is no
longer sufficient to fix orientational order. That is why a
bond-angle field 2, was introduced, in order to give the
local orientation of the two-dimensional lattice in the XY
plane. Such Q, was defined as the rotation angle around
the unperturbed nematic director m, between a given re-
ciprocal lattice vector and a fixed X axis. Even if in the
hexatic phase the two-dimensional lattice is melted, the
‘“directions” of the reciprocal lattice vectors, i.e., the
crystallographic axes, remain. The full orientational or-
der of the hexatic phase is therefore fixed by the local ro-
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tation field Q [4]:
Q=0Q,my+(myX8m) , (1.1)

where dm is a small distortion of m,. The field Q gives
the local orientation of the hexatic phase with respect to
the uniform configuration where (1, and 6m vanish.

The requirement of local invariance under rotations
[1,4] yields the coupling between the aforementioned or-
der parameter and the local field Q, which can be con-
sidered as a gauge field. In fact, as for smectics [9], free
energy must be invariant under global and local rotations
of the system, in this case under simultaneous rotations
of the liquid columns and of the director, as well as under
simultaneous torsions of the columns and ), rotations of
the two-dimensional lattice. The full elastic energy asso-
ciated with the strains of Q) was calculated in [5].

In the present paper we will go beyond the mean-field
approximation developed in [4] and [5], and treat the
hexatic N + 6 phase near the transition to the hexagonal
phase by means of a renormalization technique. In par-
ticular, we consider the gauge coupling between the order
parameter, representing a mass-density wave, and the
curvature field 2, which is the gauge field. Such an in-
teraction yields one-loop corrections to the order-
parameter propagator and then renormalizes the
density-density correlation function. The Fourier trans-
form of the density-density correlation function
represents the structure factor for the x-ray diffraction,
and therefore physical effects on its form are experimen-
tally observable.

As a physical picture, the propagating density wave is
distorted because the matter is coupled to the curvature
gauge field, so that fluctuations of orientational order
drive critical behavior of mass-density space modulation
at different wave vectors. The local distortion of the
orientational configuration influences the space propaga-
tion of density waves.

The calculation of such a renormalization effect can be
carried out by Feynman diagrams, as usual in field
theory, where they represent the “radiative” corrections
to the classical fields. The actual computation of such di-
agrams requires the knowledge of the propagators of the
gauge fields, which in our case are the director elastic
modes dm and the “rotation” elastic modes Q,. The full
elastic energy associated with the strains of Q [5] supplies
the free propagators of the gauge fields, i.e., the propaga-
tors of the pure gauge fields, not coupled to the matter.
The Frank elastic constant y3, which couples dm to (1,
[5], shows critical enhancement [8], so that the director
elastic modes dm remain strongly coupled to the “rota-
tion” elastic modes (),, near the transition temperature
too. Such a feature implies that the normal elastic modes
are a mixing of dm and (,, and the corresponding in-
verse propagators are not simply quadratic in the wave
vector [2,8].

The main result of this analysis is the possibility of an-
isotropic scaling of correlation lengths, in the hexatic
phase, both along the Z axis of the unperturbed director
with respect to the XY plane, and in the actual XY plane,
between lengths parallel and orthogonal to the crystallo-
graphic axes, respectively. Anisotropic scaling is a conse-
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quence of the coupling between the order parameter and
the gauge field Q, by the one-loop renormalization
corrections to the density-density correlation function.
Even if the bare correlation function is isotropic in the
plane orthogonal to the director [4], the gauge interaction
renormalizes it with an anisotropic contribution. The an-
isotropic critical behavior of the renormalized correlation
function is due to the tensorial structure of the gauge
coupling in our model [4], which distinguishes the direc-
tions along the axes of the hexagonal two-dimensional
lattice from the respective orthogonal directions, in the
XY plane. As a consequence, the density-density correla-
tion function acquires sixfold anisotropy in the XY plane
(see also [1,2]).

The actual occurrence of anisotropic scaling depends
on the behavior of correlation lengths at the critical fixed
point of renormalization-group flow. Unfortunately, the
above-mentioned complications about the inverse propa-
gators of the gauge fields dm and Q,, which are not quad-
ratic in the wave vector, prevent us from finding the fixed
point of the hexatic-to-hexagonal discotic phase transi-
tion, owing to very cumbersome calculation. Therefore,
we cannot state the existence of a stable anisotropic fixed
point, but we can only conclude that the transition might
show anisotropic scaling properties, i.e., different critical
indices for correlation lengths along different directions.

In this respect, it is helpful to make a warning compar-
ison with smectics, which show some analogies with
discotics [4,8]. Anisotropic critical properties of the De
Gennes model for the nematic-to-smectic- 4 phase transi-
tion were investigated by Lubensky and Chen [10], using
the € expansion in the vicinity of four dimensions and
adopting an order parameter with n/2 complex com-
ponents. As a result, for a physical value of n, i.e., n =2,
the scaling should be isotropic, because of instability of
the anisotropic fixed point. Some doubts could be raised
about the result in three dimensions, obtained in the
framework of € expansion near four dimensions. Never-
theless, other theoretical approaches [11,12] give isotro-
pic scaling for smectics as well. The only arguments that
should lead to anisotropic scaling for smectics are based
on defect theory of the smectic- A-to-nematic transition
[1], and are considered untrustworthy. Following the
analogy with the anisotropic critical properties of smec-
tics [10], we could assume that the system undergoes a
series of crossovers from anisotropic quasicritical behav-
ior to isotropic quasicritical behavior and finally, for tem-
perature near the transition point, to a first-order transi-
tion. Anyhow, such a result should be assumed with
some caution for discotics, since the aforementioned
analogy, as regards dimensional regularization, could be
misleading (see Sec. V).

The anisotropic critical properties of the density-
density correlation function are not in contrast with the
elastic isotropy of the hexagonal two-dimensional lattice.
In fact, the hexagonal symmetry of the discotic phase im-
plies cylindrical symmetry for the Frank elastic energy
[5,8], as well as for the ordinary elastic energy of the lat-
tice, while the local correlation functions are not forced
to be isotropic. We shall explicitly show that the elastic
isotropy of the lattice is not violated, even assuming, in
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the plane orthogonal to the director, two different gra-
dient terms that control the fluctuations of the order pa-
rameter along the crystallographic axes and orthogonally
to them, respectively. Anyhow, the one-loop renormal-
ization corrections give rise to such an anisotropy in the
gradient term, which cannot therefore be in contradiction
with the symmetry of the model, since the renormaliza-
tion procedure preserves the symmetry of the system
[13], while it changes the length scale and performs
“coarse graining” of the microscopic interactions.

The elastic energy of the two-dimensional hexagonal
lattice, in the condensed translationally ordered discotic
phase, is derived from a gradient term that shows anisot-
ropy in the plane orthogonal to the nematic director.
Such an elastic energy just turns out to be isotropic
despite the anisotropic gradient term. Besides the ordi-
nary Lamé coefficients [14] of two-dimensional elasticity,
expressing the resistance to shear and compression, we
also get a torsion modulus, representing the stiffness of
the liquid columns against torsion and therefore peculiar
to the hexagonal discotic phase as a quasi-two-
dimensional system.

In Sec. II, we get the lattice elastic energy for a discotic
liquid crystal. In Sec. III, we draw the free propagators
of the gauge fields from the full Frank energy of discotics.
In Sec. IV, we compute the renormalization effect on the
order-parameter correlation function and define aniso-
tropic critical indices for correlation lengths in the hexat-
ic phase near the phase transition to the hexagonal
discotic phase. In Sec. V, we discuss our results and fur-
ther developments. Finally, in the Appendix, some calcu-
lational details are given.

II. THE LATTICE ELASTIC ENERGY FOR DISCOTICS

According to our model [4], the order parameter for
the condensation of the two-dimensional hexagonal lat-
tice from the intermediate N + 6 phase is

3
Sp(r)= 3 m,(r)exp(iq;'r)+c.c., (2.1)

i=1

which describes the onset of a triple mass-density wave in
the plane orthogonal to the nematic director, with com-
plex local amplitudes 7; (i=1,2,3) and shortest recipro-
cal lattice vectors q;. The local fluctuations of the order
parameters 7); are assumed to vary slowly over typical
lattice spacing.

The sixfold symmetry of the two-dimensional hexago-
nal lattice brings forth elastic isotropy, and then the lat-
tice elastic energy must be invariant under rotations in
the plane of the lattice (XY plane). Such an overall isot-
ropy of elastic and optical properties is due to a macro-
scopic average over local interactions. On the contrary,
the local correlation functions, which describe the
response of the system to short-wavelength perturbations,
are sensitive to the symmetry of the interactions on a mi-
croscopic scale. Therefore, the density-density correla-
tion function and then the structure factor for the x-ray
diffraction S(q)=(|8p(q)|*) have not to be isotropic in
the XY plane. In the same way, the order-parameter
propagators G;(q)={(7,(q)n}(q)) are not isotropic, gen-
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erally. The above properties of correlation functions are
valid in the disordered hexatic phase as well, since the
N + 6 phase still preserves sixfold anisotropy.

For the sake of evidence, we explicitly show that, in
spite of introducing an anisotropic gradient term that
discriminates between directions in the XY plane, parallel
and orthogonal to the sixfold crystallographic axes, re-
spectively, the elastic energy of the lattice in the transla-
tionally ordered discotic phase remains isotropic. More-
over, as we shall see in Sec. IV, the renormalization of the
model at one-loop order just produces such an anisotrop-
ic gradient term in the hexatic phase near the phase tran-
sition to the hexagonal discotic phase. Therefore, the an-
isotropy of the correlation functions does not contradict
the elastic isotropy, since the renormalization procedure
preserves the whole symmetry of the model [13].

Assuming an anisotropic gradient term in the plane of
the lattice, the corresponding contribution to the free en-
ergy (throughout this paper, free energy is taken in terms
of the kp T unit) can be written as

3
Fo=1[d*{ML' 3 |n;[V,—iQ,(r)myXq, ]n;(r)|?

i=1

3
+M5' S In; X[V, —iQ,(r)myXq;]

i=1
Xn(0)? [, (2.2)
where n; =q;/q, are the directions of q; (g, being the
modulus of q;, proportional to the inverse lattice spac-
ing). With anisotropic coefficients M ;%M ,, the free
energy (2.2) distinguishes between order-parameter fluc-
tuations that develop longitudinally and transversally to
the crystallographic axes, respectively. The isotropic
counterpart of (2.2) is given in [4]. As a consequence of
such an anisotropic structure of the gradient term, the
order-parameter correlation function, in the hexatic
phase near the transition temperature, is anisotropic.

The order-parameter propagator is just (see also Sec. IV)

G (q@)={n;(q)m}(q))
=2[A4+M'g?2+M'(n,-q,)?
+Mp5 (n; Xq)*]7 !, (2.3)

which should be compared with equation (39) of [4].
From Eq. (2.3), we can define anisotropic behavior for the
correlation lengths, in the plane of the lattice too:

E=(AM )", (2.42)
£ =(AM )72, (2.4b)
EL,=(AM ;)" 12, (2.4c)

where §, §;, and §), are the correlation lengths in direc-
tions parallel to the direction of the liquid columns,
parallel to the ith crystallographic axis, and orthogonal
to both of them, respectively.

In the ordered discotic phase, we can assume a phase-
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only order parameter [4]:

—iq;-u(r)
n;:(r)=mnee ’
where 7, is the constant amplitude and u(r) is the two-
dimensional local displacement from the lattice sites.
Substituting (2.5) in (2.2) and carrying out the sum over i,
the elastic energy of the lattice can be obtained. In order
to perform the sum over i, one has to exploit

(2.5)

3
S Righig= 3845 (2.6)

i=1
i.e., equation (6) of [4], and

3
z nianiﬂniyniS = %( 8&6878 + 8(17/688 + Saﬁsﬁy ) ’

i=

2.7

with a,f, ... =x,y. In fact, the hexagonal symmetry of
the lattice makes the sum over the directions of the crys-
tallographic axes isotropic, since the sixfold invariants
are necessarily isotropic. As a consequence, one gets the
isotropic elastic energy

Fo =1 [ d®r(A[diva(r) P+ 201 45(1)u (1)

+7{Q,(r)—L[rotu(r)],}?) , (2.8)
where
1 |du, Odug
= — 2.
Hap™ dxp  Ox, @9)

is the planar strain tensor of the lattice, with a,f=x,y,
and the elastic constants are

A=Indqd(M ' —M3), 2.10)
p=3indqd(ML ' +Mp5"), (2.11)
T=3moqeM ;" . 2.12)

The ordinary Lamé coefficients [14] of two-dimensional
elasticity are given in Egs. (2.10) and (2.11), while 7 in
(2.12) is a torsion modulus, peculiar to the hexagonal
discotic phase as a quasi-two-dimensional system. In
fact, as one can see from (2.8), the elastic modulus 7
represents the stiffness of the liquid columns against tor-
sions around their equilibrium axes, and therefore points
out that the structure of the system is not strictly two-
dimensional. Each lattice site is just occupied by a
columnar stack of disklike molecules with liquidlike be-
havior along the third dimension. Such a torsion elastic
term is originated by the gauge coupling between the “ro-
tation” field Q, and the order parameter, which just
modifies the gradient term in the plane of the lattice, as
discussed in [4].
The elastic energy (2.8) can also be written as

Fy =1 [ d*r (K (diva)*+2u(u yp— 18,41 ., )

+7r{Q,—Lrotu), *} , (2.13)
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K=A+p=23n3g3M ' . (2.14)
In the form (2.13), the elastic energy of the lattice
displays the three independent elastic modes of compres-
sion, shear and torsion, respectively. The elastic constant
K, Eq. (2.14), and u, Eq. (2.11), are just the two-
dimensional compression and shear moduli, respectively.
From Egq. (2.2), one can see that the order-parameter fluc-
tuations along the crystallographic axes are controlled by
the coefficient M|, and then are a mixing of a compres-
sion mode and a shear mode, while the order-parameter
fluctuations transversal to the crystallographic axes, be-
ing controlled by M ,, are a mixing of a torsion mode
and a shear mode. In the particular case of an isotropic
gradient, M|, =M ,, the Lamé coefficient A, Eq. (2.10),
vanishes and then the compression modulus X is equal to
the shear modulus p.

Considering also the gradient term along the liquid
columns, whose coefficient is M ' [4], we get the full
elastic energy of the lattice:

F,=1[d*{C(V,u—8m)*+K(divu)?

20t gp— 38051, )
+7[Q, —L(rotu), 1} , (2.15)
where
C=inqoM ;! (2.16)

is a tilt modulus, representing the resistance of the mole-
cules to be tilted with respect to the axis of the liquid
column.

III. FRANK ENERGY AND THE GAUGE-FIELD
PROPAGATORS

The full elastic energy associated with the rotation
strains for discotic phases is [5,8]

Fy=1 [ d*r{K,(divdém)’+K,(m,-rotdm)?
+K5(myXrotdm)?+y,(V,Q,)?

+9,(V,Q,)?+2y3(my rotdm )(V,Q,)} ,
(3.1)

where () is the local rotation field defined in Eq. (1.1). As
previously observed, the hexagonal symmetry implies cy-
lindrical symmetry for the Frank energy. In particular,
note that symmetry allows y; coupling in free energy
(3.1). As a consequence, 8m and Q, are not independent
fluctuating fields, since the twist mode of dm is coupled
to the €, “rotation” mode.
In Fourier space, the elastic energy (3.1) is
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Fy=1[ pye {(K1g7+Kyq;+K3q2)|8m, (@)]*+(K g} +K,q2+K;3q2)|8m,(q)|?

+(K | —K,)q,q,[8m,(q)8m}(q)+c.c. ]+ (y,q7+7,43)Q,(q)]?

+7v39,9,[8m,(q)Q;(q)+c.c. ] —v39,9,[8m,(q)Q](q)+c.c. ]} .

It is convenient to separate dm(q) into the superposition
of the longitudinal and transverse components with
respect to the projection of the wave vector q on the XY
plane:

ém(q)=06m (qle,+8m,(q)e, (3.3)
where the longitudinal part
-dm(q) 0m,(q)+q,6m,(q)
Sm (q)= q; 9 _49 q)+tg,om,lq (3.4)

9. q

is composed of splay and bend modes, while the trans-
verse part

[q,Xém(q)], g¢,6m,(q)—q,8m,(q)
9 q,

is composed of twist and bend modes. The wave vector is

(3.6)

om,(q)= (3.5)

q=gq;e; tq.e,,

where q is just the projection of q on the XY plane and

e,=m,, (3.7a)
e=a/q,, (3.7b)
e, =e, Xe| (3.7¢)

is the orthonormal set. The elastic energy (3.2), in terms
of the Fourier variables 6m , 6m,, and Q,, is

d}
Felz%f (2733 {(K1q}+K3q))|8m (q)]?

+(K,q2+K4q2)6m,(q)|?
+(y147+729D)1Q,(q)I?

+v39,9,(Q,(q)dm*(q)+c.c.)} . (3.8)

The application of the equipartition theorem to (3.8),
which describes Gaussian field variable fluctuations, gives
the field correlation functions in Fourier space. As one
can see from (3.8), the longitudinal component &m
remains decoupled, while the transverse component 8m,
is coupled to ,. Therefore, the free (i.e., not coupled to
the matter) propagators of the gauge fields are

1
D (q)=(|bm (@) =————, 3.9a)
@)= Com. (@) K9} +K;q2 (-9
2 2
_ 2y Y19z T V40
D,(q)=(16m,(q)|?*) A(Q) , (3.9b)
K3q2+Kyq3
T(q)={|Q,(q?)=—272_ 2L )
(@ =(]Q,(q)|*) AlQ) (3.9¢)
V(@) =(Q,(q)dmr(q))=— 1229 (3.9d)

A(q)

(3.2)

[
with
A(Q)=K;719} +K,7,q1 +(K37v,+ K,y —7vDg2q?

=(K3q?+K,q3)(y1g2+7,91)—v3a2q? . (3.10)

For y;70, the inverse propagators D, ! and T~! are not
quadratic in g. Since the elastic constant y, is expected
to have critical enhancement near the transition tempera-
ture [8], the fields 6m, and Q, remain strongly coupled.

For further applications, it is convenient to factorize
the denominator A(q), Eq. (3.10), as

A(Q)=K,v,[q2+(a+b)g?][g2+(a—b)g?], (3.11)
with
K3y, +Kyy1—73 , Kars 12
a= , b= |a?— ,  (3.12)
2K37, Ky,

so that the propagators (3.9b), (3.9¢), and (3.9d), can be
rearranged in the form

D,(q)= 1 b—a+c bt+a—c
2K3b | g2 +(a+b)g?  g2H+(a—b)g} |’
(3.13a)
T(q)= 1 (a+b)bta—c) , (a—b)b—a+c)
2y, g?+(a+b)g? g2+(a—b)q? ’
(3.13b)
73 9.9,
O R @bt e a—bigt]
(3.13¢)
with
sz- (3.14)

Ky,

A similar splitting was employed in [15] to treat disclina-
tion strains and pair-interaction energy. As regards an-
gular dependence of propagators (3.13), letting

q,=qcosf, gq,=qgsinb , (3.15)
where 0 is the angle between q and m,,, and defining
D,(q)=D,(68)/4%, (3.16a)
D,(q)=D,(0)/¢%, (3.16b)
T(qQ=T(6)/4%, (3.16¢)
V(Q=P(6)/q%, (3.16d)

we have
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1
K sin?60+K ycos?0 ’
p = 1 b—a-+c b+a—c
' 2K3b | cos’0+(a+b)sin®0  cos’0+(a —b)sin®0
1 (a+b)b+a—c) (a—b)b—a++c)
T= 2 2 2 :
2y,b | cos?0+(a+b)sin?0  cos?0+(a —b )sin6
p= Y3 cos6 sinf

while they are independent of the azimuthal angle ¢ in
the XY plane.

The elastic energy (3.8) can be settled in close form, by
defining the strain vector v, the components of which are
vy=0m,, v,=8m,, and v,=Q,. The Frank energy is
then

d3
Fel=7f?;‘~’); (3.18)

where Qg is the inverse, in the matrix sense, of the
correlation function tensor

Q.5(a)v(q)vE(q) ,

Pog(@)={v(q}(q)) . (3.19)

The tensorial structure of the gauge-field propagator is
thus

3
B
Fo=41[d*{a 3 |77,.(r)|2+‘/—§1,l

i=1

3

+ 3 [V, +igq;-8m(r)In,(r) >+ [[V,—iQ,(r)my X g, ]n;(r)]?)

i=1

with, as usual in Landau free energy, 4 = Ay (T—T%*),
T* being a second-order phase-transition temperature,
while the other coefficients are positive constants. Ac-
cording to the Landau criterion [6], and then in the
mean-field approximation, for small coefficient B, the
transition is weakly first order [4]. This free energy is
composed of two contributions. The Frank energy F is
the energy of the pure gauge field Q, Eq. (1.1), and fur-
nishes, as seen in Sec. III, the propagators of the free
gauge fields, not coupled to the matter, represented by
the density-wave parameters 7;, Eq. (2.1). The free ener-
gy F, contains the self-energy and the self-interaction of
the order-parameter fields 7;, as well as the gauge cou-
pling between 7; and Q. The gradient term in (4.2) has
been made isotropic by the suitable rescaling of lengths,
in order to get an isotropic bare propagator for the order
parameter [10]. In this way, the anisotropy of the renor-
malized propagator is entirely due to the gauge interac-
tion.

Since our aim is to investigate anisotropic critical

" K3¥ [cos?6+(a+b)sin?0][cos?0+(a — b )sin?0]

(r)772(r)173(r)+%cl
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(3.17a)

(3.17b)

’ (3.17¢)

(3.17d)

Pog=D 5+ T8,,8,5+ V(85,0051 8,p010) , (3.20)
with
(3.21)

where D, D,, T, and V are given in Egs.(3.9) or (3.13),
and the orthonormal triad is in (3.7).

D,p=D,e e gt Diegep 5

IV. RENORMALIZATION AND ANISOTROPIC SCALING

The full free energy for a discotic liquid crystal is
[4,5,8]

F=F,+F, , @.1)

where F,; is given in Eq. (3.1) and F, by an appropriate
rescaling of lengths and fields [10], can be written as

3

2 ‘n[(r)!z

i=1

2 3
+2C, 3 In (ol

i=1

’ (4.2)

properties of the order-parameter propagator, we focus
our attention on gauge coupling. The vertex interactions
originated by gauge coupling are represented in Fig. 1.
In fact, anisotropic behavior is yielded by the tensorial
structures of such vertex interactions, which distinguish
between directions parallel and orthogonal to the shortest
reciprocal lattice vectors q;, respectively. Actually, as we
shall see in the following, only the three-point vertices
[Figs. 1(a) and 1(c)] are effective in giving anisotropic
contributions to the order-parameter propagator, at one-
loop order. On the contrary, the order-parameter self-
interactions, as the cubic and quartic terms in (4.2), can-
not lead to anisotropic contributions.

The order-parameter propagator G;(q)={7,;(q)n}(q))
is renormalized at one-loop order by the self-interactions
of the density parameter 7); and by the gauge interactions
represented in Fig. 1. As a consequence, the inverse
order-parameter propagator at one-loop order is given by

G Yq)=Gy(q)+TI(q), (4.3)
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where the index 7 has been dropped for compactness. In
(4.3), Gy(q) is the free propagator of the order parameter,
i.e., the propagator in the absence of gauge coupling and
self-coupling, while I'(q) is the self-energy due to one-
loop corrections. From (4.2), in Gaussian approximation
and for an isotropic bare gradient, the free propagator is
then

2

A -4—q2 '
The renormalization-group transformation consists of
two steps. Step one is the integration over short-
wavelength field fluctuations, which yields the perturba-
tive contributions to the vertex functions and to the prop-
agators, e.g., the correction I'(q) to G, '(q) in (4.3). Step
two is the rescaling of lengths, in order to recover the
primitive length scale of fluctuations. In such a way, at
the end of the recurrent procedure, one obtains the primi-

Gyl(q)= (4.4)

FIG. 1. Vertex interactions due to gauge coupling. The wig-
gly line represents the gauge field dm, while the dashed line
represents the gauge field Q,. The solid line stands for the
order-parameter field 1,. The three-point vertex (a) is
%q,—a(2K,+qz), while the four-point vertex (b) is %q,»aq,-g. The
three-point vertex (c) is equal to — %(mOXq,»)u( 2K,,+q,,), and
the four-point vertex (d) is 2¢. In (a) and (c) the wave vectors
carried by the lines are displayed.
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tive free energy in terms of the renormalized parameters
(see, e.g., [13]).

The contributions to I'(q) at the one-loop level are
given in Fig. 2. The diagrams that involve four-point ver-
tices [Figs. 2(a)-2(c)] are independent of the external
wave vector q and therefore only renormalize the param-
eter A4 in free energy (4.2), i.e., the second-order phase-
transition temperature T*. On the contrary, the dia-
grams in Figs. 2(d)-2(g), built up with three-point ver-
tices, depend on q, and then also renormalize the gra-

(a)

FIG. 2. One-loop diagram contributing to I'(q). The wiggly
line represents D ,4(q), the dashed line represents 7(q), and the
mixed wiggly-dashed line stands for V(q), which are defined in
Sec. III as the gauge-field propagators. The solid line represents
G(q), i.e., the propagator of the order parameter. The diagrams
(a)-(c), which involve four-point interactions, are independent
of the external wave vector q. On the contrary, the diagrams
(d)-(g), which are built up with three-point vertices, depend on
q and then renormalize the gradient coefficients.
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dient coefficients of (4.2). Figure 2(d), due to cubic self-
interaction, gives isotropic renormalization. Figures
2(e)-2(g), because of the tensorial structure of gauge in-
teraction vertices (see Fig. 1), produce anisotropic contri-
butions to the gradient coefficients. Therefore, each
iteration of the renormalization procedure gives rise to
anisotropic self-energy I'(q). Anisotropic rescaling is
then necessary, in order to regain the original isotropy of
the propagator (4.4) (see also [10]). In that way, the re-
normalized propagator G;(q) should fulfill the homo-
geneity relation [10]
Gi(q,1)
=A’ n”G,-(qu,AH”“(ql-n,-f,AH”HIqun,-I,Al/v”t),
4.5)

where t=(T—T*)/T*, while |q,-n;| and |q, Xn;| are
the longitudinal and transversal components of q, with
respect to the directions n; of the crystallographic axes,

respectively. Anisotropic scaling of correlation lengths
follows from (4.5):
£~ (), (4.6a)
£y~ (4.6b)
En~ltl ™2, (4.6¢)

{(D,+D,)cos20 I,(A)

27
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with
n=0+uv, (4.7a)
vip=(14pu,v, (4.7b)

where p); and p,, are the anisotropic scaling indices,
while v, v,;, and v, are the anisotropic exponents with
which correlation lengths along different directions
diverge for T—T*.

The anisotropic contribution to I'(K) due to the dia-
gram in Fig. 2(e) is

d3
F(K Zqzaqxﬁfl> >A-l 27Tq)3 (K+q)DaB(q)
X(2K,+q,)?, (4.8)

where d*q=g2%dq dp sin6d6. The gauge-field propaga-
tor D g is defined in (3.21), and G, in (4.4). The integra-
tion in (4.8) is made over the shell 1> |q| >A~!, which
removes short wave lengths at each iteration. This pro-
cess creates anisotropy in the coefficients of the term
quadratic in K. Developmg the integrand expression of
(4.8) up to second order in K and performing the angular
integration over the azimuthal angle ¢ in the XY plane,
we get

+K4D, +D)I,(A)— 4D, +D,)cos?0 I,(A)+(D, +D,)cos*0 I,(A)]

+(0; K )’[— 4D, +D,)cos?0 I,(A)+L(3D, + D, )cos?0sin6 I,(A)]

+(0; XK [ = LD, +D,)cos’0 I,(A)+ LD, +3D, )cos?0sin0 I,(A)]} ,

where we have defined

L= [ 4°Goladg , (4.10a)
1

M= [ Golgdg, (4.10b)

IZ(A)——_—f/:ﬂquﬁ(q)dq , (4.10¢c)

L= [ 4'Gigidg (4.10d)

while D, and D, are given in (3.17a) and (3.17b), respec-
tively, and the angular average over 6 is defined as

=1+ [f(6)sin6do . @.11)

2

rK)=— |22

(4.9)

The various angular averages are given in the Appendix.
The anisotropic contribution to I'(K), which comes
from Fig. 2(f), is

Ty(K)=— (myXq;)o(myXq;)g
a,B

dq
Xf1> >AT 1(2 )3 GO(K+q)T(q

X(2K ,1tq,,)(2K gt+q.5) ,
(4.12)

where T(q) is the propagator of 1,, Eq. (3.13b). As for
the previous contribution, at the second order in K, we
obtain anisotropic gradient coefficients

{ T sin?0 Io(A)+K2[ T sin%6 cos?0 I;(A)— LT sin20 I,(A)]

+ (0, K[ LT sin*0 I;(A)— LT sin%0 I,(A)]

+(n, XK ){8TT, (A)— 2T sin?0 I, (A)+ 2 T sin®0 I,(A)]} ,

(4.13)
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where T'is given in (3.17c).
The contribution of Fig. 2(g) is
d3q
12,]2,\“1 (277')3

Ty(K)=23 (mXq;)ogis | (4.14)
B

Go(K+q)V(qles2K, +q,)(2K |, +q,,) ,
where V(q) is the mixing between Q, and &m,, given in Egs. (3.9d) or (3.13c). Equation (4.14) at second order in K
gives

2

90 | (27 sinBcosO Io(A)+K2[ —5P sind cosd I,(A)+2P sinf cos*0 I3(A)]

[(K)=—

+(n; K, )*[— P sinf cosd I,(A)+ LV sin*0 cosf I5(A)]

+(n; XK )}[— 5V sinf cos I,(A)+3 P sin®0 cosf I;(A)]} 4.15)
where P is given in (3.17d).

Collecting the anisotropic contributions to the self-energy, Egs. (4.9), (4.13), and (4.15), we obtain the propagator
G;(q), renormalized at the one-loop level, of the form (2.3). In particular, we emphasize the anisotropy of G;(q) in the
XY plane with respect to the n; crystallographic axis, whose vestige remains in the hexatic phase near the phase transi-
tion to the hexagonal discotic phase. Such anisotropy follows from the tensorial structure of the gauge coupling in our

model [4], and can be expressed by the difference between M ;! and M ;! of (2.3) which, at the one-loop level, is

2

%

My =My =4 |-~

(4T1,(A)—2(T sin0+ P sin0 cosf)I,(A)

+1[(D, —D)cos?@ sin?0+ T sin*6+2V sin>0 cosO1I5(A)] .

The result (4.16) depends on the scale A of renormaliza-
tion, and therefore acquires physical sense only when,
after many recurrences, the renormalization-group trans-
formation brings the system towards the fixed point cor-
responding to the critical region of the phase transition.
The anisotropy (4.16), if it is not vanishing at the critical
fixed point, then yields anisotropic scaling indices
L1751, as defined in (4.7).

V. DISCUSSION

We have studied renormalization corrections, at one-
loop order, of our model [4,5] for the transition of the
hexatic N +6 phase into the hexagonal discotic phase.
As a result, the gauge coupling between the order param-
eter and the curvature field  drives critical behavior of
correlation lengths, which can be experimentally investi-
gated from the structure factor for x-ray diffraction. In
particular, the tensorial structure of the gauge coupling
yields anisotropic corrections to the order-parameter
correlation function, even in the plane orthogonal to the
nematic director with respect to the directions of the six-
fold crystallographic axes.

Such anisotropy of the order-parameter correlation
function might determine anisotropic scaling indices for
the correlation lengths along different directions. Actual-
ly, one should compute the anisotropy at the critical fixed
point of renormalization flow, where the physical quanti-
ties become independent of the scale of renormalization.
The occurrence of anisotropic scaling therefore depends

(4.16)

[
on the existence of such an anisotropic fixed point and on
its stability. The inverse propagators of the gauge fields
are not quadratic in the wave vector, owing to the mixing
between the director elastic modes and the “rotation”
elastic modes. Because of some complications about
cumbersome calculations related to such a peculiar struc-
ture of the gauge-field propagators, we have not been able
to find and analyze the fixed point controlling the phase
transition.

Some analogies between our model [4,8] and the De
Gennes model for the nematic-to-smectic- 4 transition [9]
would suggest a series of crossovers, from anisotropic
critical behavior to isotropic critical behavior and finally
to a first-order transition, as for smectic phases [10].
However, this result for smectic phases is based on € ex-
pansion in the vicinity of four dimensions and therefore
could not be simply extended to our model. In fact, it is
not clear how to generalize our model in arbitrary D di-
mensions. For the physical value D=3, the ordered
phase can be considered solid in two dimensions and
liquid in the third dimension [4]. In arbitrary D dimen-
sions, we could generalize the model assuming solidlike
behavior in D —1 dimensions and liquidlike behavior in
the remaining dimension. But, in that way, we should
deal with an order parameter whose number of com-
ponents depends on the number of space dimensions,
since we ought to describe the onset of density waves in
arbitrary D —1 dimensions. Otherwise, we could assume
two “solid” dimensions and D —2 “liquid” dimensions,
which would modify the Frank energy introducing new



47 ANISOTROPIC CRITICAL PROPERTIES OF THE HEXATIC. ..

elastic constants. Moreover, the particular gauge cou-
pling of our model, as in Eq. (4.2), is strictly related to
three dimensions, and it is not clear what role the un-
physical dimensions should play. Anyhow, the structure
of the model would change with the number of dimen-
sions.

Therefore, the framework of dimensional regulariza-
tion should not be suitable to our model. On the con-
trary, we should use the fixed-dimension formalism
developed by Parisi [16], in D =3. That is why, in Sec.
IV, we compute renormalization corrections in D =3. At
present, in the absence of an understanding of the fixed
point relative to the transition between the hexatic N +6
phase and the hexagonal discotic phase, we cannot state
anisotropic scaling but only conclude about its possibili-
ty, based essentially on symmetry grounds.
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APPENDIX

In this appendix, we give some angular averages that
enter the self-energy and then determine the anisotropy
(4.16) between the renormalized gradient coefficients.
Such averages of propagators of the gauge fields express
the effect of orientational order on the order-parameter
propagator. The average over 0, the angle comprised be-
tween the wave vector q and the unperturbed nematic
director my, is defined in (4.11).

All averages can be expressed in terms of the general
integral

7 sin®"0 cos®™6

L,.(a,B)=1| ———————sinfd0, Al
d Zfo a sin?0+ B cos26 n ab
which can be evaluated using
m in0do
Lo(a,p)=1 [— S07EY
ool ZJ-0 a sin’0+ B cos?0
172 P 172
—a
== t
a(f—a) arctan o , (A2)

and some simple reduction formulas. The integrals we
need, besides (A2), are

) 172 8 172
_ _ a —Qa
Ly (a,B)= —a 1 o l arctan - } ,
(A3)
_ 1 B
Lile,B)= B—a -1+ aB—a)
e
X arctan Baa l l R (A4)
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1 1/2
LotaB) =5y " —ar B—a
_ 1/2
Xarctan B~a l ] ,
a
(AS)
_ 2 a B
Lute B = Bar | @)
1/2
Xarctan B—al l,
a
(A6)
. 5
LB ==35"05
2
+ o _ +___../3*
(B—a)? a*’(B—a)'”?
1/2
Xarctan B~a
a
(A7)

Taking into account the definitions of D, ﬁ,, T,and ¥V

in (3.17), we obtain the angular averages, in terms of
(A2)-(AT7), as

D, =Ly(K,,K;), (A8)
5,=2—1b[(b—a+c>LOO(K3(a+b),K3)
+(b+a—c)Ly(Kya—b),K3)], (A9)
7_>=2—1b[(a+b)(b +a—c)Loy(ala+b)y,)
+(a—b)(b—a+c)Lyly,(a—b),y,)], (A10)
D cos’0=Ly,(K,,K3) , (A11)
ﬁ,cos26=i[(b-—a+c)L01(K3(a+b),K3)
+(b+a—c)L01(K3(a_b),K3)] ’
(A12)

?sin29=51;[<a Fb)b+a—c)L g(yqla+b)y,)

+(a—b)b—a ‘+‘C)L10(')/2(a —b)yVZ)] ’

(A13)
P sin6 cos0=—"> [ Lo, (K+(a+b),K+)
2b7/1 01 3 sy X3
“'Lo](K3(a—b),K3)] ’ (A14)
D cos*0=Ly,(K,,K;) , (A15)
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=

D, coso= —2%[,(1) —a+e)Ly(Kyla+b),K;)

+(b4+a—c)Lyy(K4(a—b),K3)],
(A16)

?sin4o=2—1b[(a+b)(b Fa—c)Lyy(yyla+b),y,)

+(a—b)b—a +C)L20(';/2(a —b ),'}’2)] ’
(A17)

D sin?0cos’0=L,,(K,K3) , (A18)

B, sin0cos’0 = [(b—a+¢)Lyy(Ky(a+b),Ks)

+(b +a ’“C)LII(K:;(G _b),K3)] )
(A19)

?sinzecos29=51g[(a b)Y b+a—c)Ly(yya+b)y,)
+(a—b)b—a+c)

XL(yla—b)y,y)]1, (A20)
M=£—1[L11<K3(a+b),1<3)
—L,,(Ks(a—b),K;)], (A21)
PsinBoos’0=—1>—[Lo,(K4(a+b),K;)
2by,
—Loy(Ky(a—b),K3)] .
(A22)

Note that the angular averages entering the anisotropy
(4.16) are only (A10), (A13), (A14), (A17), (A18), (A19),
and (A21).
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